Estimating CPU Cost of BGPsec on a Router

RIPE / Wien

2011.11.02

Kotikalapudi Sriram <kotikalapudi.sriram@nist.gov>
Randy Bush <randy@psg.com>

BGPsec from ASO to AS1

BGPsec AS1 to AS2

R1 signing over R0's signature is same as signing over entire R0 announcement

BGPsec Islands

- RPKI-Based Origin Validation can be deployed by randomly scattered ISPs
- · Each gets the benefit of origin validation
- · BGPsec depends on your neighbor signing
- It will deploy as islands which eventually interconnect

We Draw Pictures Like This

But Reality is This

A's Customer 'Cone'

Number of Paths

- One ISP router, R, has many paths for prefix P
- All but one are from iBGP peers
- BGPsec spec says R does not validate paths received from iBGP peers
- I.e. R has to validate only one path for each P from peer A

Some Largish ISPs Cones

Very Large Global

- 1 1353 --- **ISP's Own Pf**x
- 2 21586 --- **BGP Cust Pfx**
- 3 6820 --- Cust's Cust Pfx
- 4 1627 --- ...
- 5 942
- 6 45
- 7 14
- 8 6

Very Large Global

- 1 620
- 2 16028
- 3 9434
- 4 2922
- 5 435
- 6 46
- 7 15
- 8 27
- 9 1

Large Global

- 1 443
- 2 8197
- 3 8052
- 4 2715
- 5 387
- 6 37
- 7 48
- 8 157
- 9 2

Large Global

- 1 501
- 2 3686
- 3 3603
- 4 816
- 5 45
- 6 9
- 8 1

Asian Regional

- 1 152
- 2 791
- 3 120
- 4 35
- 5 3 # pfxs path length

Yes, there are rather long tails

Yes, we removed prepending

Incremental Deployment

If A and B Deploy BGPsec, What is the Load on a Router?

Now this Picture Makes Sense!

Cost to Sign/Validate Using One Core

	Operations per second					
			amd64, Sandy			
			Bridge; 2011			
		amd64; Westmere	Intel i7-	NITROX PX PCI-	NITROX III PCI-	
	Intel Core 2 Duo,	(206c2); 2010 Intel	2600K; 4 x	Express CN1620 -	Express CNN3570-	
	64-bit, 3 GHz,	Xeon E5620; 4 x	3400MHz;	PCle Look-aside	PCIe Look-aside	
	8GB, Linux 5.7	2400MHz	threads	P rocessor	Processor	
ECDSA-P256 Verify	890	1139	2215	854	6832	
ECDSA-P256 Sign	1100	1335	2530	3293	26344	

 Source: eBACS: ECRYPT Benchmarking of Cryptographic Systems

http://bench.cr.yp.to/results-sign.htm

And: Cavium, Inc. (private communication)

Updates Per Second

Validation Cost Model

BGPSEC

Peering

CPU Time on R if Session to A is Reset

Path	#Ptxs	Secs
1	1353	0.61
2	21586	19.49
3	6820	9.24
4	1627	2.94
5	942	2.13
6	45	0.12
7	14	0.04
8	6	0.02
Total S	34.59	

ISP C and C's Customer Cone							
Path	#Pfxs	Secs					
1	620	0.28					
2	16028	14.47					
3	9434	12.78					
4	2922	5.28					
5	435	0.98					
6	46	0.12					
7	15	0.05					
8	27	0.10					
9	1	0.00					
Total S	34.06						

CPU Time on R if Session to C is Reset

Signing Cost

- You only sign once, irrespective of path length
- You only sign toward BGPsec speakers
- Though the cost of stripping
 BGPsec toward non-speakers may
 be on the order of signing

Need not Sign To Stubs

Only Needs to Have Own Private Key, No Other Crypto or RPKI Data No Hardware Upgrade!!

Stub ASs vs Transit

BGP Peers per Router

ISP	BGP Peers	BGP Custs
W	29	95
X	3-4	20
У	6	12
Z	8	16

These numbers are from real ISPs, but large ones

Signing Bottom Line

- Except for W, it comes to 2-3 BGPsec customers per aggregation router
- Say 400k routes at 2530 sigs/sec
- (3*400000)/2530 = 475 seconds
- But this presumes the entire Internet is signed, which is a looooooooong time from now
- · But W will eventually have a problem!

CPU for Validation and Signing

3.24

0.18

0.06

0.03

73

942

45

14

Total (seconds)

6

- · B peers with four BGPsec peers
- B's other peers are not BGPsec aware

CPU Load on B, including Validation & Signing, if Session to A is Reset.

So Don't Panic, Engineer Prudently